MASS TRANSFER IN A GRANULAR COLUMN IN THE
PRESENCE OF NONEOUILIBRIiIM SORPTION AT
THE PHASE INTERFACE
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The direct and inverse problems of nonequilibrium sorption dynamics are considered for the
case of a variable filtration velocity; the direct problem is solved by means of orthogonal
polynomials and the inverse problem with the help of statistical moments.

When a flow of fluid material passes through a column filled with spherical sorbent granules, the
filtration velocity of the flow will increase. In general the pressure gradient in a granular column (allow-
ing for both inertial and viscous forces) depends nonlinearly on the filtration velocity [1, 2]. For fairly
low velocities only the viscous forces have to be taken into account. In this case the pressure gradient [3]
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Regarding the quantity of gas involved as constant and considering Eq. (1) for the case of weak tur-
bulence, we may find the change taking place in the filtration velocity along the column
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where L; = pya®o®/1200uy (1 ~0a)? 7.

In the presence of sorption at the phase interface, the same transfer in the granular column is de-
scribed by the material -balance equation and the equation of sorption kinetics. The kinetics of the acts of
sorption for small quantities of the sorbate in the solution (or weak adsorption on a uniform surface) are
described by a linear differential equation [4]

0
th_ = kyc® — kyg®. (3)

At equilibrium the linear differential equation (3) passes into the linear sorption isotherm. The linear
equation of sorption kinetics (3), despite its limitations, is of particular interest in view of the fact that it
enables us to analyze the sorption of each component of a mixture independently of the presence of the other
components. Using the solution of the sorption-dynamics problem for one component, we may thus analyze
the effect of the rate of the acts of sorption and the mass-transfer velocity on the form of the dynamic
output curves of various sorbates, which is important in choosing the optimum conditions for a number of
processes in chemical technology. We describe the change in the concentration of sorbate inside the spher-
ical sorbent grains by the equation of material balance in the grain:
oc® D 1 —-0—(r2 6c°) ag®

o P\ T T w ‘ “)

I. M. Gubkin Institute of the Petrochemical and Gas Industry, Moscow. Translated from Inzhenerno-
Fizicheskii Zhurnal, Vol. 20, No. 2, pp. 230-238, February, 1971. Original article submitted January 21,
1970. .

© 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. All rights reserved. This article cannor be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

161



In order to gain a correct solution of Eqs. (4) and (3), we set out the following initial (zero) and
boundary conditions:

a) continuity of the external and internal fluxes at the boundary of a spherical grain
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b) symmetry in the center of the grain
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where 8 = 8, (u/uo)1/2 [5].

Using the integral Laplace transformation, we now find a solution to the system of equations (3), (4)
with boundary conditions (5), (6). After certain transformations, we write the following for the Laplace
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For a cylindrical column, the equation of material balance, allowing for longitudinal mixing, takes the
form
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In view of the fact that transient field of concentrations exists in the column, the effective longitudinal
mixing may be described by a dispersion coefficient. In general, the coefficient of dispersion D(u) is made
up of the molecular diffusion Dgin the narrow channels of the sorbent grain [6], the convective mixing Dju
in the granular layer which takes place on passing around the grains [6], the turbulent mixing due to turbu-
lent pulsations [7], the mixing due to velocity fluctuations in the granular layer, the mixing D2u2 due to the
existence of a velocity profile in the column c¢ross section (TaYlor‘diﬂfusion) [8], and the mixing in the
stagnant zones between the grains (relaxation dispersion) [9]. For a liquid flow, the coefficient of relaxa-
tion dispersion is greater than for a gas flow, since hardly any stagnant zones are formed in the latter.

In order to present a correct formulation for the problem of sorption dynamics in a granular column,
we write down the zero initial and boundary conditions

(2, t)|sm0 = c,f (¥), (9)

in which for frontal sorption d"ynamics fy(t) = 1, for developing sorption dynamics and short columnsg fz' (t)

= § (t), and for long columns £, (t) = 1 —n (t—ty). The time t; for admitting the test substance into the column
should be considerable in the latter case owing to the substantial liquefaction of the test substance (sample)
at the exit from the long column.

Using the integral Laplace transformation, we rewrite the system of equations (7), (8) for the trans-
forms in the following manner:
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with boundary conditions
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If longitudinal mixing has a considerable influence on the mass transfer in the granular layer (D = 0),
and the length of the column is such that z ~ L, we must solve Eq. (10) rigorously.

In view of the fact that, in order to construct the solutions, we require expressions for various
statistical moments, we shall seek the solution to Eq. (10) in the form of a series in p:

5e, p) = D" + Dhnp" = Ag(2) + Bh(2). 13)
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Substituting (13) into (10) we obtain the system
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Solving the system (14) successively we find
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We find the constants A, B from the boundary condition (11) at z = 0 and the boundary condition at
z = L; these conditions specify the continuity of the concentrations ¢(z, p) and concentration flux j = D[d&(p,
z)/dz]—u€'(p, z) in Eq. (13) and in the equation obtained from the solution of Eq. (10) with u = ug (1 —L/Lg)-1/2
= const. Affer certain transformations, allowing for the boundary condition (11b), we may write
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We find the expressions for the initial moments from {10]
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The initial and central moments are related by
< i
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We see from Egs. (15) and (16) that finding the moments reduces to simple quadratures. If we sub~
stitute (2) into (15), after integration we obtain some extremely cumbersome expressions for the moments,
very difficult to use. Let us therefore find the simplest expressions for the moments with D = 0 (i.e.,

when the longitudinal mixing plays a minor part). In this case, substituting ¢ = ¢, (uy/u) E fnpn into Eq.

n=0

(10) with due allowance for Eq. (12) and the boundary condition (11b), we obtain
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where fy =1;fr, |, = =0 (m = 1),

Using Eq. (19) and the relations (17) and (18), we may write down the first initial and three central
moments
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The form of the dynamic output curve (which is almost Gaussian) is mainly determined by the speci-
fication of these four moments. The first initial moment (o) characterizes the position of the "center"
of the curve, the second (u,) the degree of "scatter” of the curve, the third (u3) gives a measure of the
asymmetry of the "bias" (or "skewness"), where the asymmetry coefficient Sk = u3/ug 2 and for Sk > 0 the
leading edge is steeper than the trailing edge, while for Sk < 0 the reverse is the case. For a symmetrical
curve all the odd central moments are equal to zero. The fourth moment (u,) characterizes the "sharp-
ness," the coefficient of sharpness or the "excess" being Ex =p.4/u§ — 3 (for a Gaussian curve E4 = 3). For
a curve sharper than a Gaussian, Ey > 3, while for a flatter curve Ex < 3. Using the expressions for the
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moments (20)-(23), we may analyze the effect of a variable filtration velocity u on the form of the dynamic
curve. For a flow velocity variation of uy < u < = (0 =z = Lg) the limiting value of the first initial moment
ayp = (2ké Ly/8ug) = (2/3) @y (@ ¢ is the initial moment for u = u, = const.). In view of the fact that 1 = oy
/oy = 2/3, it is reasonable to introduce an "effective velocity," in such a manner that the initial moment
calculated by Eq. (20) for an effective velocity u* constant along the column

gy 2O 1y (g gy o LHOFRAL
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Hence the effective flow velocity

w — 3”;—0 [1— (1= LIL =1 = (25)

wher*e 1 =< A =3/2. The limiting value of the last term in (21) calculated rigorously for L — L, equals
6/7y, = 0.855 (1/y}). Using the expression for the limiting velocity u; = (3/2) uy, we may find the approx-
imate limiting value of the last term in (21), which equals (yﬁ Vi /up-! =0.815(1 /73‘) (the difference from
the rigorqus value is 5%). Analogous calculations for the last term of (22) gives the exact limiting value
0.75 (1/(y4)?); the approximate value using (25) is ((1/F}) (uo/u*))™ = 0.66 (1/¥'% (difference 12%). These
calculations confirm the reasonability of introducing the effective flow velocity given by (25),

On analyzing the moments (20)-(23), we see that for a variationof yysu<e~(0=z= Ly) the output
curve becomes flatter and more asymmetrical. The limiting changes in the moments are as follows. The
first initial moment o, falls by 34%, the second central moment u, falls more than 34%, the asymmetry
coefficient Sk increases by 17%, the excess E, diminishes by 34%.

For an effective flow velocity u* = const, we shall seek the solution to Eq. (10), allowing for condi-
tions (11b) and Eq. (12), in the form

B pl=a Do @6

n=0

Substituting (26) into (10), we obtain
ey oo () [ oo )
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where sy =1, splz =9 =0(n =1).

Using (27), (17), (18), and (25), we may write down the expressions for the first initial and three
central moments thus:
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where

= [1+(1T:3)§1D(u*) :[1+(1+k)6]( W + D‘ +D) (32)
We showed in the foregoing discussion that the "spreading" of the dynamic output curve wag deter-

mined by the second central moment. We see from (29) that the total rate of mass transfer is determined

by the rate of the acts of sorption at the phase interface, the velocity of internal and external mass transfer,

and the longitudinal mixing. The physical meaning of the termas in round brackets in (29) is as follows:

1/k2 is the delay time (retardation) due to the kinetics of the acts of sorption; 7i is the delay time due to

the finite rate of mass transfer within the sorbent grains; 1/+ kyo is the delay time due to the finite rate of

mass transfer at the outer boundary of the sorbent grains; 7 1 is the delay time due to the existence of.

longitudinal mixing.

We see from Eq. (26) that the original functions may only be found on the basis of various asymp-
totic approximations t —e« (or p —0). For a fixed column length L the dynamic output curves (direct
problem) must be sought in terms of orthogonal Hermite polynomials [11]

- o (2l 22

Using the expression for the Hermite polynomials Hp (x) given in [12] and making use of their or-
thogonal properties, we derive expressions for the coefficients
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Using the experimental dynamic curves and the analytical expressions for the moments (28)-(31), we
may solve the algebraical system of equations and find the parameters y}';, Tis 1/ky, D (inverse problem).
The solution to the algebraical equation of the third order may be found by the Cardan method and that of
the fourth~order equation by Euler's method [13].

We note that the mass transfer in a granular column here considered involves the concept of "ef-
fective retardation,” the delay time due to different forms of mass transfer being given by Eqs. (24) and
(32). Chromatography makes extensive use of the concept of the "effective theoretical plate" considered
by Van Deemter [14].

In order to describe the dynamic output curve, Van Deemter [14] used a symmetrical Gauss curve
and the equilibrium diffusion equation of kinetics, which only approximately describes the mass transfer
in the sorbent grains [15]. The real dynamic output curves are always asymmetrical (u; in Eq. (30) is
always nonzero), so that the Van Deemter theory only approximately déscribes the shape of the dynamic
output curves (direct problem). In order to determine the kinetic and dynamic parameters (inverse prob-
lem) from the experimental dynamic output characteristics for a variable filtration flow velocity, it is
quite impossible to use the Van Deemter theory, and the moment equations (28)-(31) must be employed.

The soluti(;n of the equations of nonequilibrium sorption dynamics was considered in [16, 17} on the
basis of statistical moments with a constant filtration velocity for a specified initial concentration distri-
bution in an unbounded, infinite column (unbounded problem).

The dependence of the flow filtration velocity on the length of the column was considered for the case
of equilibrium sorption dynamics in [18, 19]. In these papers the authors used the diffusion kinetic equa-
tion [20] (which only approximately describes mags transfer in the sorbent grains), not using the exact
expression for the coefficient of longitudinal diffusion (D = Dyu). The method of obtaining the effective
theoretical plate equation was analogous to [14]; hence the calculations of [18, 19] may only be used to
describe symmetrical dynamic curves.

An experimental confirmation of the effect of variable filtration velocity on the dynamic output curves
was obtained in [21, 22]. However, in view of the fact that the dynamic curves were recorded for a short
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column length (the filtration velocity varied very little) and some of the parameters characterizing the
column not presented, these experimental results can hardly be compared with the theoretical results of
the present investigation.
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NOTATION

proportion of free space in the column filled with spherical sorbent grains;
dynamic viscosity;

radius of the spherical sorbent grains;

gas pressure at inlet;

linear flow velocity at inlet;

concentration of sorbent within the free space of the sorbent grains;
concentration of absorbed material;

sorption and desorption constants;

coefficient of (internal) diffusion in the channels of the sorbent grains;
concentration of sorbate in the flow;

coefficient of {external) mass transfer;

kinetic coefficient allowing for external mass transfer;

dispersion coefficient allowing for effective longitudinal mixing;
initial moments;

central moments.
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